
An Introduction to PLEXIL and the PLEXIL Executive

Part 2:  Plexil Language

Copyright © 2008-2010 USRA                                    This presentation was developed in Open Office Impress.  Template courtesy of Chih-Hao Tsai 

(technology.cstsai.org/impress).

NASA Ames Research Center
Autonomous Systems and Robotics

PLEXIL Workshop

 



2

 Outline

Introduction
Actions
Action Attributes

Variables
Conditions
Interface
Library Nodes

Action Types 
Core PLEXIL

Empty Node
Assignment Node
Command Node
Update Node
Library Call Node
List Node

Action Types (continued)
Sequence and Concurrence
Conditional (If-Then-Else)
Loops
Message Passing

Data Types and Expressions
The UNKNOWN value
Numeric Expressions
Logical Expressions
String Expressions
Arrays

World State (lookups)
Action State
Translating Plexil into XML



3

 Introduction

Standard programming syntax for PLEXIL

Example

SimpleAssignment:
{
  Integer foo = 0;
  PostCondition: foo == 3;
  Assignment: foo = 3;
}

Translated into PLEXIL XML for execution

XML format described by XML schema

 See directory plexil/schema



4

Actions

Actions specify a kind of behavior
General format:

<Action name>:
{
  <action attributes>
  <action body>
}

Action name, attributes, and body are all 
optional.  E.g. an empty action is:

{ }



5

Action Attributes

Action Attributes
Variables
Conditions
Interface
Library Nodes



6

Variables

An action may declare local variables.

Visible to the action and its descendants (lexical scope)

Of type Boolean, integer, real, string, or array

Examples

Boolean isReset = true;
Integer n = 123;
Real pi = 3.14159;
String message = "hello there";
Integer scores[100];
Real defaults[10] = #(1.3 2.0 3.5);



7

Conditions

An action's conditions are logical expressions.

If omitted, defaults apply

Up to one clause for each condition type:

Start, end, pre, post, invariant, skip, and repeat condition

Examples
StartCondition: Node1.outcome == SUCCESS;
EndCondition: SignalEndOfPlan.state == FINISHED ||
                       SendAbortUpdate.state == FINISHED;
PostCondition: AtGoal;
InvariantCondition: LookupOnChange(ZZZZCWEC5520J) == 1;
RepeatCondition: Count < 10;



8

Interface

Interfaces control variable visibility and access

Example
{
  Integer x = 2; 
  String message = “Enter number:” ;
  NodeList:
    {
      InOut Integer x;
      In String message;
      Integer y = 5;
      NodeList:
        { Assignment: x = y + 2; }
        { Command print(message); }
    }
}

    



9

Library Actions

Library actions are actions you “call” in other actions.

They are invoked by Library Call Nodes.

Any action can be a library action.

Library actions often have Interface clauses

These are the action's formal parameters.

Library actions are top level (i.e. not nested) actions.

Exactly one top level action per file is required.

Upcoming slide on library nodes has examples.



10

Action Types

Core PLEXIL
Empty Node
Assignment Node
Command Node
Function Call Node
Update Node
Library Call Node
List Node

Concurrence
Sequences
Conditional (If-Then-Else)
While and For loops
Inter-executive communication

The type of the action is determined by its body, which comes after its 
(optional) attributes.



11

Core PLEXIL

Core PLEXIL is a subset of PLEXIL.
All PLEXIL translates into Core PLEXIL
Basis for execution
Basis for formal semantics
Consists of nodes

Empty Node
Assignment Node
Command Node
Update Node
Library Call Node
List Node

Nodes are kinds of actions



12

Empty Node

Empty nodes have no body.  They may contain only 

attributes.

Example:

VerifyTemp:
{
 PostCondition: LookupNow("engine_temperature") > 100.0;
}

Common uses for empty nodes:
Verification of a state (as in above example)
Stubs (for testing or incremental development)



13

Assignment Node

Identified by an Assignment clause, e.g.

// A simple assignment node

IncrementCounter:
{
  Assignment: ExecutionCount = 1 + ExecutionCount;
}

The assigned variable must be writable.

The source (RHS) of the assignment is an expression 

whose type must match that of the variable.



14

Command Node

Identified by a Command clause, e.g.
// A simple command node
ConfirmProceed:
{
  Boolean result;
  EndCondition: isKnown(result);
  PostCondition: result;
  Command: result = QueryYesNo("Proceed with instructions?");
}

The assigned variable is optional and must be writable.

Call to command immediately returns a handle, finishing 
the node.  (Plan's execution is not blocked).

This is independent of the returned value, which is lost 
if the node finishes before the value is returned.



15

Update Node

Updates reflect data to an external system (e.g. planner)

Data represented as name/value bindings

Identified by an Update clause

// A simple update node
SendAbortUpdate:
{
  StartCondition: MonitorAbortSignal.state == FINISHED;
  Update: taskId = taskTypeAndId[1], result = -2;
}

Any number of name/value bindings are allowed.



16

Library Call Node

Identified by a LibraryCall clause

Example library node:
F:
{
  In Integer i;
  InOut Integer j;
  Assignment: j = j * j + i;
}

Example call to above library node (note declaration):

LibraryNode F(In Integer i, InOut Integer j);

LibraryCallTest:
{
  Integer k = 2;
  LibraryCall: F(i=12, j=k);
}



17

List Node

Identified by a NodeList clause.  Example:

Root:
{
  NodeList:

Increment: { Assignment: count = count + 1; }
Detect: { 
  StartCondition: LookupOnChange(“button-pressed”); 
}
React: {
  StartCondition: Detect.State == FINISHED;
  Command: activate_device()
}

    }

The first node , Increment, is  unconstrained.
The second node, Detect, is empty.
The third node, React, runs after Detect finishes.



18

Concurrence

A Concurrence specifies parallel execution.

StartSystems: {
  Concurrence:
    TurnOnLights: { Command: activateLights(); }
    TurnOnCamera: { Command: activateCamera(); }
}

A Concurrence is essentially a List Node.



19

Sequences

A Sequence specifies sequential execution.

StartSystems: {
  Sequence:
    TurnOnLights: { Command: activateLights(); }
    TurnOnCamera: { Command: activateCamera(); }
}

An UncheckedSequence is like a Sequence, except 
success of each action is not checked.

A Try is like a Sequence, except that each action is 
executed until one succeeds, then it terminates.



20

Conditional

The If-Then-Else specifies conditional execution.

Camera: {
  If (Lookup(PowerOn)) Then
    activateCamera: { Command: activateCamera(); }
  Else Warn: { Command: warn(“No power ...”); }
}

The Else is optional.

Conditionals may be nested (use brackets accordingly).



21

For Loop

The For Loop repeats an action over a range of numbers

pins: {
  For (Integer I = 0; I < 10; I + 1)
    checkAndInform: {
      Boolean state;
      Sequence: 
        { EndCondition: isKnown(state);
          Command: state = checkPinState(I); }
        { Command: informPinState(I, state); }
    } // checkAndInform
}



22

While Loop

The While Loop repeats an action while its expression 
holds

processItems: {
  Boolean continue = true;
  While (continue)
    processItem: { 
      …
      If (…) Then { Assignment: continue = false; }
    }
}

Loops can contain, or be nested within, other loops (or any 
other kind of action).



23

Inter-Executive Communication

Multiple PLEXIL executives can communicate with each 
other:

By sending messages (strings)
By issuing commands

The OnMessage action specifies an action to respond to a 
message.

HandleFinished: { 
  OnMessage (“finished”)
    { Command: shutDown; }
}



24

Inter-Executive Communication (cont.)

The OnCommand action specifies an action to respond to 
a command from another executive.

AdjustSpeed : { 
  Command: speed = adjustSpeed(45.0); }

HandleAdjustSpeed : { 
  OnCommand adjustSpeed (Real incr) {
    Sequence:
      { Assignment: CurSpeed = CurSpeed + incr;
      { Command: SendReturnValue (CurSpeed); }
  }
}

Assume these actions are in different plans/executives.
SendReturnValue is optional; default return is true.



25

Wrapup

 Data types and expressions
The UNKNOWN value
Numeric Expressions
Boolean Expressions
String Expressions
Arrays

World State (lookups)
Node State
Translating into XML



26

The UNKNOWN value

Every type includes the UNKNOWN value.
Default initial value for variables and array elements
Results when a lookup fails
Results when a requested node timepoint is invalid
Part of PLEXIL's three-valued logic

True, False, Unknown
Not a literal – cannot be used in a plan

Instead, queried through isKnown operator



27

Numeric Expressions

Evaluate to numbers (integer or real)
Literals 

Integers
Reals

Variables of type integer or real
Lookups
Node timepoint values
Arithmetic operations

Add, subtract, multiply, divide
Square root, absolute value

Arrays: size, element index, elements (for numeric 
arrays)



28

Numeric Expressions (cont.)

Examples

234
12.9
X (where X was declared Integer)
Bar (where Bar was declared Real)
LookupNow ("ExternalTemperature")
TakePicture.EXECUTING.START   (a node timepoint)
Bar + 4.5
X - (30 + LookupNow("x") )
3 * X
(3 * X)/(X - 20)
sqrt(X)
abs(X)
Entries[X] (where Entries is an array of integers)



29

Logical Expressions

Boolean literals
true, false

Boolean-typed variables
Boolean flag = false;
StartCondition: flag;

Lookups that return a Boolean-valued state

Array elements (of Boolean arrays)



30

Logical Expressions (cont.)

Comparison

Equal, not equal

Postcondition: attempts == successes;
Precondition: arm_status != engaged;

Less than, greater than (or  equal)

StartCondition: temperature < 70;
InvariantCondition: altitude > 4000;
PreCondition: LookupOnChange(“score”) >= 10;
Precondition: LookupNow(“tachometer”) < 6500;



31

Boolean Expressions (cont.)

Operations 

Negation (not):  !
Disjunction (or): !!
Conjunction (and): &&
Exclusive Or: XOR

Examples

StartCondition: ! Lookup(“engine_on”);
StartCondition: temp > 100 || rpm > 6000
StartCondition: score < 10 && my_turn
Assignment: result = (x > 10) XOR (y > 10)



32

Logical Expressions (cont.)

Examples

True
False
CommandReceived (where CommandReceived was declared Boolean)
Lookup("Rover:initialized")
count <= 30 (where count was declared Integer)
Lookup("Rover:batteryCharge") > 120.0
! CommandReceived
Lookup("Rover:initialized") || CommandReceived
Flags[3] (where Flags is an array of Booleans)
isKnown(val) (where val is any variable)
node3.state == FINISHED && node3.outcome == SUCCESS



33

String Expressions

Evaluate to strings
Literal strings (double quoted, as in “hello”)
Variables of type string
Lookups
String concatenation (+)

Examples

"foo"
"Would you like to continue?"
Username (where Username was declared string)
Lookup("username")
"Hello, " + "Fred"    => "Hello, Fred"
"Hello, " + Username



34

Arrays

Example

{
  // array of 10 Booleans
  Boolean flags[10];
 
  // array of 6 integers, with X[0]=1, X[1]=3, X[2] = 5.
  // X[3] through X[5] are UNKNOWN.
  Integer X[6] = #(1 3 5);

  Assignment: X[3] = X[2] + 1;
}



35

Standard Plexil – World State

Obtained through lookups

Syntax:  Lookup (<state_name>, <tolerance>)
Tolerance optional, defaults to 0

Two execution contexts
“Fetch” : value immediately returned

Action bodies, check conditions
Tolerance ignored

“Subscribe” : current value returned, then subscribed in 
plan for future changes

Gate conditions



36

World State (cont.)

Example

HeatRoom:
{
  StartCondition: Lookup("Temperature") < 70;
  Postcondition: Lookup("Temperature") > 70 &&

       Lookup("Temperature") < 74
  Command: RunHeaterCycle();
}



37

Action State

Consists of:

Current execution state
Start and end times of each execution state
Outcome of finished actions
Failure type of failed actions
Last command handle, for command nodes

Accessible only for current node and its parent, 
children, and siblings.



38

Action State (cont.)

Root:
{
  EndCondition: Bar.state == FINISHED;
  PostCondition: Bar.outcome == SUCCESS ||
                 Foo.failure != INVARIANT_CONDITION_FAILED;
  NodeList:
    Foo: { ... }
    Bar:
    {
      StartCondition:
        Foo.command_handle == “COMMAND_ACCEPTED” &&
        Foo.EXECUTING.START > 300.0;
    }
}

This says: Root ends when Bar is finished; Root is successful if Bar is 
successful, or Foo failed while maintaining its invariant; Bar starts 
when Foo's command has been accepted, and Foo started executing 
sometime after time 300.



39

Translating into XML

By convention, Plexil files have extension .ple

Files must contain a single plan (top level action).

Plexil files are translated into XML with the plexilc 

command
plexilc foo.ple

The resulting file is foo.plx

Errors and warnings will get printed if there are 

problems.  Fix them and try again!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

