
An Introduction to PLEXIL and the PLEXIL Executive

Part 1: Overview

Copyright © 2010 USRA This presentation was developed in Open Office Impress. Template courtesy of Chih-Hao Tsai
(technology.cstsai.org/impress).

NASA Ames Research Center
Autonomous Systems and Robotics

PLEXIL Workshop

2

Outline

Background
Plexil plan structure
Plexil execution

3

What is a Plan?

A Plan is a course of action to achieve a set of goals.
The course of action may differ depending on the
initial state the world is in.
Each action in a plan may only work properly when
certain conditions are met.
When actions are executed, they may have certain
effects.

4

What is PLEXIL?

PLEXIL is a language for expressing plans.

5

PLEXIL Design Goals

Simple, small, uniform
Efficient
Well-defined
Expressive

Sequences, branches, loops, concurrency
Time-driven, event-driven, condition-driven

Enables verification and validation
Pre conditions, post conditions, invariants

Deterministic

6

What is the PLEXIL Executive?

The PLEXIL Executive:
Receives PLEXIL plans from the Planner or User.
Sends plan execution status to the Planner or User.
Sends commands to the System.
Receives state information from the System.

Planner
Executive System

User

7

Implementation Details

● The Plexil Executive is written in C++.

● The Plexil Executive interfaces to systems via an

Interface Adaptor (C++) framework. Underlying

communication can be provided by:
 Sockets / TCP

 CORBA

 CMU's IPC

8

Plexil Syntax

Plexil has two user syntaxes:
(standard) Plexil (.ple files)
PlexiLisp (.pli files)

These user syntaxes produce PLEXIL XML (.plx
files).

The Plexil Executive executes Plexil XML.
Plexil and Plexilisp translate to XML.
Standard Plexil is written in Java.
Plexilisp is written in Emacs Lisp.
Neither is needed for plan execution.

9

Recent Applications

PLEXIL has been used for:
K10 Rover control
Earth science drilling executive
Rotorcraft system architecture (SIRCA)
Execution of Procedure Representation Language

International Space Station procedures (simulation)
Habitat Demonstration Unit procedures (field tested)

10

Future Applications

Robotics
Unmanned vehicles and habitats
Systems and simulations
Intelligent software agents

11

How to Get Plexil

To download source and binary for Linux or Mac:
Visit http://plexil.sourceforge.net
Click on Download tab

To download source only:
svn co https://plexil.svn.sourceforge.net/svnroot/plexil/trunk plexil

To build, Plexil requires:
GNU C/C++ 3.3.3 or newer
Java SDK 1.4 or newer
Jam build tool 2.5 or newer

http://plexil.sourceforge.net/

12

Plexil Community

Visit the PLEXIL wiki at:
http://plexil.wiki.sourceforge.net

For help, problems, or bugs, send mail to:
plexil-support@lists.sourceforge.net

For general Plexil discussion:
plexil-discussion@lists.sourceforge.net

To join plexil-discussion, visit
Visit http://plexil.sourceforge.net
Click on the mailing lists tab.

http://plexil.wiki.sourceforge.net/
mailto:plexil-support@lists.sourceforge.net
mailto:plexil-discussion@lists.sourceforge.net
http://plexil.sourceforge.net/

13

Outline

Background
Plexil plan structure
Plexil execution

14

Plan Topology

A Plexil plan is a tree of actions:

15

Action Types

● Sequences (several varieties)
● Concurrence
● If-Then-Else
● While and For loops
● Inter-executive message passing
● Core PLEXIL (nodes)

● Interior nodes:
● List

● Leaf nodes:
● Assignment
● Command
● Empty
● Library call
● Update

16

Core PLEXIL

Subset of PLEXIL into which all actions are translated
Consists of nodes

For now, only three node types are important:
List – contains other nodes
Assignment – assigns a value to a variable
Command – controls the System

17

Gate Conditions

Each node has four gate conditions:
Start
End
Repeat
Skip

These control when a node executes.

18

Check Conditions

Each node has three check conditions:
Pre
Post
Invariant

If any of these fail, the node fails.

19

Start vs Pre

Start condition x < 10
Node starts if x < 10 and parent has started.

Pre condition x < 10
If node starts, and x >= 10, then node immediately fails,
without executing its body.

20

Outline

Background
Plexil plan structure
Plexil execution

21

Plans are State Machines

A Plexil plan is a state machine.
A plan has plan state or internal state.
The world has world state or external state.
The plan responds to changes in world state.
The plan responds to one change at a time.

22

Plan State

A plan has two kinds of state:
Node state
Variable state

23

Node States

Inactive
Waiting
Executing
Finishing
Iteration_Ended
Failing
Finished

24

Node States

Inactive
Waiting
Executing
Finishing
Iteration_Ended
Failing
Finished - outcome:

Skipped
Success
Failure

25

Node States

Inactive
Waiting
Executing
Finishing
Iteration_Ended
Failing
Finished - outcome:

Skipped
Success
Failure – failure type:

Pre condition failed
Post condition failed
Invariant condition failed
Parent failed

26

World State

The world has two kinds of state:
Variable state
Command execution state

27

Events are State Changes

● Lookup(X)
● Returns the value of X in the current state.
● In certain contexts (gate conditions), subscribes the

plan to changes in X.

28

Main Loop

Plexil's main loop:
Read the new external state.
Execute assignments and commands.

Execute assignments
and commands

Read new
external state

29

Nodes are State Machines

Each node is a state machine.
All nodes execute in parallel.
All nodes execute synchronously.
The plan state machine is the synchronous parallel
combination of the node state machines.

30

Node State Machine

ExecutingExecute Cmd
 / Assignment

IterationEnded

Finished

Waiting

Inactive

Start?

Pre?

Skip?

Parent executing? Invariant?

End?

Post?

Repeat?

Failure Success

Skipped

T

T

T T

T

T

T

T

F

F

F

F

F

F

F

F

Reset

Parent waiting? FTReset

31

Starting and Stopping

Execution starts with all nodes INACTIVE.
Execution stops when no node can transition.

32

Execution Loops

Loop for each external state change {
 Read external state;
 Loop until no node can transition {
 Loop for all nodes in parallel {
 Process one transition;
 }
 }
}

Plan execution has three nested loops:

33

Example Plan

SafeDrive: {
 Integer pictures = 0;
 NodeList:
 Loop: {
 RepeatCondition: ! LookupOnChange(WheelStuck) &&
 pictures < 10;
 NodeList:
 OneMeter: {
 Command: Drive(1);
 }

 TakePic: {
 StartCondition: OneMeter.state == FINISHED;
 Command: TakePicture();
 }

 Counter: {
 Assignment: pictures = pictures + 1;
 }
 }
}

34

Example Plan Execution

SafeDrive Loop OneMeter TakePic Counter pict WS
------------- ------ ------------- ----------- ---------- ----- -----
Inactive Inactive Inactive Inactive Inactive ---- F
Waiting Inactive Inactive Inactive Inactive ---- F
Waiting Waiting Inactive Inactive Inactive 0 F
Executing Executing Inactive Inactive Inactive 0 F
Executing Executing Waiting Waiting Waiting 0 F
Executing Executing Executing Waiting Executing 1 F
Executing Executing IterE Waiting IterE 1 F
Executing Executing Finished Waiting Finished 1 F
Executing Executing Finished Executing Finished 1 F
Executing Executing Finished IterE Finished 1 F
Executing Executing Finished Finished Finished 1 F
Executing IterE Finished Finished Finished 1 F
Executing Waiting Finished Finished Finished 1 F
Executing Executing Inactive Inactive Inactive 1 F
...
Executing IterE Finished Finished Finished 10 F
Executing Finished Finished Finished Finished 10 F
IterE Finished Finished Finished Finished 10 F
Finished Finished Finished Finished Finished 10 F

35

Example Plan Execution

SafeDrive Loop OneMeter TakePic Counter pict WS
------------- ------ ------------- ----------- ---------- ----- ------
Inactive Inactive Inactive Inactive Inactive ---- F
Waiting Inactive Inactive Inactive Inactive ---- F
Waiting Waiting Inactive Inactive Inactive 0 F
Executing Executing Inactive Inactive Inactive 0 F
Executing Executing Waiting Waiting Waiting 0 F
Executing Executing Executing Waiting Executing 1 F
Executing Executing IterE Waiting IterE 1 F
Executing Executing Finished Waiting Finished 1 F
Executing Executing Finished Executing Finished 1 F
Executing Executing Finished IterE Finished 1 T
Executing Executing Finished Finished Finished 1 T
Executing IterE Finished Finished Finished 1 T
Executing Finished Finished Finished Finished 1 T
IterE Finished Finished Finished Finished 1 T
Finished Finished Finished Finished Finished 1 T

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

