NASA Ames Research Center
Code TI

Planning and Scheduling Group

Autonomous Systems and Robotics Area

Interfacing External Systems

PLEXIL Workshop

July 2008

Interfacing External Systems

@ Architectural overview a
2 The ExternalInterface class
2 The ExecListener class

@ The LuvListener class
@ Interfacing to the real world

The ThreadedExternalInterface class

The AdaptorExecInterface class

The InterfaceAdaptor class

@ Extending InterfaceAdaptor |

Registering adaptors

2 Extending ExecListener
@ Using CORBA
@ Putting it all together _,
@ Building an application > B

T

s

1_";::‘.:.:.{

Outside
World

updates

Execution

The ExternalInterface class

@ Virtual base class

@ Defines API of interface to real world

@ Singleton

@ Implementation-agnostic (more or less)

2 Single or multiple threads
Monolithic or modular interface

@ Abstract base class

@ Defines API for reporting execution events
2 Node state transition
@ Plan added
@ Library node added

@ Zero or more instances

e

ks

g

S

The LuvListener class

@ Concrete class derived from ExeclL.istener

@ Reports plan events to the Lightweight Universal-Exec
Viewer (LUV)

@ Communicates via TCP socket
@ Can be used in any Universal Exec application

Interfacing to the real world

@ Interface framework for real applications
The ThreadedExternalInterface class
The AdaptorExecInterface class
@ The InterfaceAdaptor class

@ Delegates to InterfaceAdaptor instances
@ Adaptors coded as application requires
@ Adaptors can be added and removed dynamically

The ThreadedExternalInterface class

T
G

@ Concrete class derived from ExternalInterface
@ |solates the Exec from interfacing detalils

@ Implements the ExternalInterface API
2

mplements the AdaptorExecInterface API (see
next slide)

@ Multi-threaded

@ Most input data is queued

@ Delegates to InterfaceAdaptor instances
2 Adaptors indexed by:

@ Lookup (state) name
@ Command name
@ Function name

2 Delegates to default adaptor if none found by name

o4
b
3

The AdaptorExecInterface class

@ Abstract base class
@ Implements Singleton design pattern

@ Defines part of ThreadedExternalInterface API
as seen by InterfaceAdaptor

@ |solates InterfaceAdaptor subclasses from

needing to know implementation of
ThreadedExternalInterface

The InterfaceAdaptor class

@ Abstract base class
@ Provides essential methods
@ Has virtual methods for:

@ Lookups

@ Commands

Function calls

Planner updates

@ Default methods print error message

@ Subclasses implement these methods as needed by
application

@ Subclasses responsible for data format translation

Extending InterfaceAdaptor

@ Partition functionality as desired
@ Suggest one adaptor class per external device type
@ Select communication method:
2 |PC
@ Socket
2 CORBA
? ... efc.
@ Adaptor instance is responsible for checking:
Name of operation(s)
2 Argument count and formats

R

Extending InterfaceAdaptor:

- LA

Implementing lookup methods

@ Lookups
2 lookupNow ()

@ Should return immediately

@ Store results in 2" argument
(std: :vector<double> &)
2 registerChangeLookup()

registerFrequencyLookup()

@ Set up asynchronous lookups (e.g. telemetry)

@ Values returned via
AdaptorExecInterface: :handleValueChange()

unregisterChangeLookup()
@ unregisterFrequencyLookup()

@ Perform cleanup when asynchronous lookups go out
of scope

%@

13 §

s Bt s : L B L A L A s
Extending InterfaceAdaptor:
Implementing lookup methods, continued

@ Bare minimum: implement LookupNow () for state | |

“time”
2 Used internally by Exec
@ Can return Expression: : UNKNOWN ()

@ Plans can use LookupOnChange of time to implement
timers... conversely can be implemented by a timer

@ If you implement registerChangeLookup () or
registerFrequencyLookup (), you must also

implement 1lookupNow () for same state(s) ﬂ
2 Can simply return Expression: : UNKNOWN () *
a Call
AdaptorExecInterface::notifyOfExternalEvent () 2

after posting asynchronous lookup values

ko

Extending InterfaceAdaptor:

b A i

Commands, functions, planner update

Commands
2 executeCommand ()
invokeAbort ()

Functions
executeFunctionCall()

Planner update

sendPlannerUpdate()
Called in a batch after node transitions completed
Acknowledgment can be delayed

Post ack and return values to Exec with
AdapterExecInterface: :handleValueChange()

Call

AdaptorExecInterface: :notifyOfExternalEvent ()
after posting acks and return values

%%

-E.z o i

1i' ¥ ‘ '

nding InterfaceAdaptor:

Plans and libraries

@ Use AdaptorExecInterface methods:
handleAddPlan()
handleAddLibrary()

@ Translate from XML to intermediate representation
(PlexilNode) with PlexilXmlParser

@ Call
AdaptorExecInterface::notifyOfExternalEvent ()

after new plan sent
2 Not needed for libraries

rfaceAdaptor:

General hints

@ Delayed return values (asynch lookups, commands,

functions, etc.) and plans require call to
AdaptorExecInterface::notifyOfExternalEvent ()

@ Exec does not run until this method is called
@ Not needed by 1lookupNow () or libraries

b

Registering adaptors

@ AdaptorExecInterface methods:
setDefaultAdaptor ()

@ Use if only one adaptor needed
@ ... or if one adaptor handles most interfacing

@ Can use bummyAdaptor instance for debugging
registerPlannerUpdateInterface()

@ Others keyed by name:

@ registerLookupInterface()
@ registerCommandInterface()
@ registerFunctionInterface()

Extending ExecListener

@ Methods

2 notifyOfTransition()

@ Called during quiescence cycle
@ One call per node state transition

@ Should be fast
notifyOfAddPlan()

2 notifyOfAddLibrary()
@ Any or all of the above can be empty methods

i

Using CORBA

@ Based on open source ACE/TAQO implementation

@ CorbaHelper class provides essential utilities:
getOrb ()

initializeOrb()

initializePOA()
initializeNameService()
queryNamingServiceForObject ()
nameServiceBind()

@ ExecListener implementations
2 EventChannelExeclListener
2 NotificationChannelExeclListener

2 Extensible framework w/ user-definable filtering,
formatting

¥ & & O & &

%%

Putting it all together i

@ Interface runs exec... not other way around!
@ Exec is event-driven

ks

@ Nothing happens unless interface notifies Exec of a
new event

£

i

Building an application

Initialize Exec static data structures:
initializeExpressions()
initializeStateManagers()

Construct ThreadedExternalInterface instance

Construct at least one interface adaptor instance and
register it with the external interface

Construct the PlexilExec instance
Attach the external interface to the exec

Construct, register exec listener instances with exec
as needed

Start Exec by calling

ThreadedExternalInterface::run() Or
ThreadedExternalInterface: :spawnkExecThread()

T
G

,..
iF
&

Questions?

@ See the PLEXIL wiki 4
http://plexil.wiki.sourceforge.net/Interfacing

@ See the PLEXIL doxygen web site:
http://plexil.sourceforge.net/doxygen/universal-exec/ ;

@ “Use the source” |

@ Email: plexil-support@lists.sourceforge.net

E%ﬂ

23 |

http://plexil.wiki.sourceforge.net/Interfacing
http://plexil.sourceforge.net/doxygen/universal-exec/

